
Validation of MOPITT carbon monoxide using ground-based
Fourier transform infrared spectrometer data from NDACC
Rebecca R. Buchholz1, Merritt N. Deeter1, Helen M. Worden1, John Gille1, David P. Edwards1, James
W. Hannigan1, Nicholas B. Jones2, Clare Paton-Walsh2, David W. T. Griffith2, Dan Smale3,
John Robinson3, Kimberly Strong4, Stephanie Conway4, Ralf Sussmann5, Frank Hase6,
Thomas Blumenstock6, Emmanuel Mahieu7, and Bavo Langerock8

1Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, Boulder, Colorado, USA
2Centre for Atmospheric Chemistry, University of Wollongong, Australia
3National Institute of Water and Atmospheric Research, New Zealand
4Department of Physics, University of Toronto, Canada
5Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany
6Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany
7Institute of Astrophysics and Geophysics, University of Liège, Belgium
8Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium

Correspondence to: R. R. Buchholz (buchholz@ucar.edu)

Abstract. The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous

dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total

column CO measurements from ground-based remote sensing Fourier transform infrared spectrometers (FTSs). Validation

uses data recorded at 14 stations, that span a wide range of latitudes (80◦N to 78◦S), in the Network for the Detection of

Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station and different5

vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels. All three MOPITT retrieval

types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only).

Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10%.

Mean bias is 2.8% for TIR-only, 5.4% for TIR-NIR and 7.0% for NIR-only. The TIR-NIR and NIR-only products consistently

produce greater bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-10

NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to

account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation,

for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels

often provides the best correlation, indicating compensating pixel biases and well captured error characteristics. We find that

MOPITT bias does not depend on latitude, and rather is influenced by the proximity to rapidly changing atmospheric CO.15

MOPITT bias drift has been bound geographically to within ±0.5% yr−1 or lower at almost all locations.
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1 Introduction

Atmospheric carbon monoxide (CO) is useful for studying both transported and local sources of pollution. CO is directly

emitted from incomplete combustion, such as from biomass burning and fossil fuel use. CO is also chemically produced from

the oxidation of methane and volatile organic compounds. The approximate global lifetime of two months makes CO an ideal

atmospheric constituent to track atmospheric physical and chemical processes over a range of spatial scales (Edwards et al.,5

2006; Duncan et al., 2007).

Measurements of Pollution in the Troposphere (MOPITT) is the longest running satellite sensor measuring atmospheric CO

globally, measuring since 2000 aboard the satellite Terra from low-Earth orbit using thermal infrared (TIR). MOPITT is the

only satellite instrument measuring CO in both TIR and near infrared (NIR). A long record presents an opportunity to analyse

temporal changes in atmospheric CO. For example, long term CO trends from satellite records were compared in Worden10

et al. (2013). However, continued validation of the instrument is necessary to ensure that observed temporal changes are due

to changes in the atmospheric state, rather than changes in the instrument. Validation is performed against an independent

measure of atmospheric CO over a long time period, to help determine any instrument drift.

MOPITT has been extensively validated with in situ measurements at the ground and by aircraft (Deeter et al., 2014, 2010;

Emmons et al., 2009, 2004). Validation and intercomparison was also completed using other satellite products (Martínez-15

Alonso et al., 2014; de Laat et al., 2014; George et al., 2009; Yurganov et al., 2008). However, there has been a lack of

systematic validation using ground-based remote-sensing measurements of total column CO. Also, the recent addition of

MOPITT multispectral retrievals — which provide improved lower tropospheric sensitivity due to reflected solar wavelengths

— have a limited validation history compared to the TIR-only product (Worden et al., 2010). Finally, updates to the MOPITT

retrieval algorithm and ongoing measurements require updated validation.20

Ground-based solar Fourier Transform infrared Spectrometer (FTS) measurements provide a valuable source of long-term

total column CO data for validating MOPITT. Many of the stations have records that pre-date the launch of MOPITT. Biases

between stations are minimized by standardizing retrieval procedures (Rinsland et al., 2007; Hase et al., 2004). Such time

series have proved useful in previous validation studies of CO measurements from space (e.g., Sussmann and Buchwitz, 2005;

Clerbaux et al., 2008; de Laat et al., 2010; Kerzenmacher et al., 2012). FTS total column CO data at the Southern Hemisphere25

stations Lauder and Arrival Heights have been briefly compared with MOPITT values in Morgenstern et al. (2012), who used

version 4 level three MOPITT data, and did not account for sensitivity differences between instruments.

This research presents the first systematic validation of MOPITT CO with ground-based solar FTS measurements. Section

2 introduces the MOPITT CO version 6 satellite product and ground-based measurements. Section 3 details the comparison

methodology, including smoothing of FTS measurements with MOPITT averaging kernels. Validation results are presented in30

Sect. 4, with an analysis at each ground station (Sect. 4.2), different surface-type scenes (Sect. 4.3) and investigation of detector

element differences (Sect. 4.4). The geographic and temporal dependence of validation results is discussed in Sect. 5.
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2 Instruments and retrieval products

2.1 MOPITT satellite instrument

MOPITT measures CO with a correlation radiometer aboard the satellite Terra, completing ∼14 sun-synchronous polar orbits

per day, flying at a nominal altitude of 705 km, with equator overpasses at ∼10:30 and ∼22:30 local time. MOPITT is nadir-

viewing with a ground resolution of 22 × 22 km. Each of the four indium antimonide detector elements is cooled by a Stirling5

cycle cooler to 100 K. Ground coverage is achieved by cross–track scanning, producing a swath-width of around 600 km.

Complete Earth coverage is achieved in approximately 3 days (Drummond, 1992; Drummond and Mand, 1996; Deeter et al.,

2003).

The MOPITT correlation radiometer modulates either the pressure or length of a correlation cell filled with target gas,

in order to determine spectral line differences. The fundamental CO infrared band (4.7 µm) is measured from terrestrial10

thermal infrared radiation (TIR) (Drummond, 1992; Drummond et al., 2010; Drummond and Mand, 1996; Deeter et al., 2003).

More recently, incorporating the overtone band (2.3 µm) from reflected solar radiation in the near infrared (NIR) provides

multi-spectral retrievals (Worden et al., 2010; Deeter et al., 2009; Deeter, 2013). The additional NIR signal enhances retrieval

information, particularly for near-surface concentrations. However, enhanced retrievals from solar reflection are only available

during the day and over land (Deeter et al., 2010). Here, we use the three retrieval products available from MOPITT version15

6 (V6) (Deeter et al., 2014): thermal infrared only (TIR-only), joint thermal- and near infrared (TIR-NIR), and near infrared

only (NIR-only). MOPITT products are publicly available through several repositories linked via http://terra.nasa.gov/about/

terra-instruments/mopitt.

The retrieval process for MOPITT follows maximum likelihood optimal estimation (Rodgers, 2000; Pan et al., 1998), com-

bined with a fast radiative transfer model of the atmosphere to invert the radiometric signals (Edwards et al., 1999). Cloud-free20

scenes are used in retrievals (Warner et al., 2001), apart from the case where low warm clouds do not affect the radiative

balance. A priori profiles are combined with radiance measurements and meteorological parameters to statistically determine

a maximum a posteriori solution. The V6 monthly a priori profiles are averages from a 2000–2009 climatological run of the

Community Atmosphere Model with Chemistry (CAM-Chem), gridded at one degree resolution (Lamarque et al., 2012). Me-

teorological parameters such as temperature and water vapor profiles are from MERRA (Modern-Era Retrospective analysis25

for Research Applications, http://gmao.gsfc.nasa.gov/merra/) reanalysis (Deeter et al., 2014; Deeter, 2013; Rienecker et al.,

2011). The V6 retrievals improve upon version 5 by eliminating a geolocation error; using an updated a priori climatology; us-

ing meteorological data with higher spatial and temporal resolution; and updating radiance correction factors. A full description

of the MOPITT V6 products can be found in Deeter et al. (2014).

Profiles of volume mixing ratio (VMR) are retrieved on ten vertical levels that include a floating surface pressure plus30

nine equally spaced pressure levels from 900 to 100 hPa (Deeter et al., 2010). Profile values are reported on levels with

uniform vertical weighting above each level (Deeter, 2011). Trace gas values are initially retrieved as log10(VMR), which

means averaging kernel (AK) values are associated with log10(VMR) (Deeter et al., 2003, 2010). AKs are produced for every
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measurement and describe the sensitivity of retrieved CO values to the true state vector (Deeter et al., 2003, 2010). Reported

total column CO values are calculated from integrating the VMR profiles.

2.2 Ground-based Fourier transform infrared spectrometers

We use measurements of CO from ground-based FTSs to validate MOPITT retrievals. Trace gas retrievals from solar absorption

in the mid infrared region (MIR, 2–14 µm) contribute to the Network for the Detection of Atmospheric Composition Change5

(NDACC, http://www.ndacc.org/) (Hannigan et al., 2009). We use publicly available data from 14 NDACC stations, which

span the globe from 80◦N to 78◦S. Figure 1 indicates the location of each NDACC station and Table 1 provides station-specific

information, including location, measurement-period, instrument type, and associated site reference. Records from almost all

stations pre-date the launch of MOPITT. The spectrometers used are Bomem model DA8, Bruker IFS 120HR, Bruker IFS

120M, or Bruker IFS 125HR. In some cases, instruments have been updated during the station lifetime. Spectral resolution is10

typically 0.004 cm−1 or higher.

A solar tracker is coupled with the spectrometer to track the solar disk for measurements during clear-sky conditions. The

FTS instrument comprises a Michelson interferometer combined with either a KBr or CaF2 beamsplitter. Detectors are liquid-

nitrogen-cooled indium antimonide (InSb) and mercury cadmium telluride (MCT) (Bacsik et al., 2004). Optical bandpass filters

are used to improve signal-to-noise ratio in the CO spectral region. The simultaneous use of spectral microwindows during trace15

gas retrieval further improves signal to noise by minimizing the influence of interfering species. Microwindow regions used in

the standard CO retrieval strategy are 2057.7–2058.0, 2069.56–2069.76, and 2157.50–2159.15 cm−1 (Rinsland et al., 2007),

with some minor differences between stations. More information can be found at http://www2.acom.ucar.edu/irwg.

The most recent retrievals are used for this validation study. Retrieval code may be SFIT4 (10 stations), SFIT2 (2 stations;

Pougatchev et al., 1995), or PROFFIT (2 stations; Hase, 2000). SFIT and PROFFIT retrieval codes were inter-compared by20

Hase et al. (2004), who show retrievals and AKs are consistent to within 1% or below. A method based on optimal estimation

is used to retrieve trace gas information (Rodgers, 2000). Retrieval combines a radiative transfer model with spectroscopic

line parameters from the HITRAN database (Rothman et al., 2009), a priori profiles from the Whole Atmosphere Community

Climate Model (WACCM, Garcia et al., 2007), information about the instrument line shape (unique at each station), meteo-

rological parameters such as pressure and temperature from the National Centers for Environmental Prediction (NCEP), and25

information about the atmospheric water content. Synthetic spectra are produced and parameters are iteratively improved to

minimize the cost function. Interfering gases are simultaneously adjusted in the retrieval process.

Trace gases are retrieved on a vertical grid of ∼40 layers, with some site-specific adjustments to spacing in the lower

atmosphere near the observation site altitude. The retrieved profile is reported as VMR, with each value describing a pressure-

weighted average value at the mid-point within a layer for SFIT or level values in the case of PROFFIT. AK matrices are30

associated with VMR and are reported for every measurement. Column AKs are also reported and describe the response of

column values to a change in the partial column profile.
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3 Comparison methodology

We analyse all three MOPITT retrieval products: TIR-only, TIR-NIR, and NIR-only (Deeter et al., 2014). Although MOPITT

has been measuring CO since March 2000, one of the two optical benches became nonoperational in May 2001, as a result of

cooler failure. The period before optical bench loss is known as Phase 1 and from August 2001 onward is known as Phase 2

(Deeter et al., 2004; Emmons et al., 2004). While instrument changes between phases are accounted for in the forward model5

and retrieval algorithm, a small step-change remains between Phase 1 and 2 retrievals. Consequently, we focus on the validation

of Phase 2.

Recently, a calibration issue was found with the NIR radiances that affects retrievals after February 2012. Therefore, TIR-

NIR and NIR-only are validated between August 2001–February 2012. In contrast, TIR-only are validated between August

2001 and station specific end dates, determined by the available FTS data at each station (see Table 1).10

Validation is performed for a range of conditions to assess whether parameters that are known to affect the MOPITT sensi-

tivity and AKs will affect the validation results. Specifically, separate validation is performed for the four MOPITT detector

elements; for land-scenes versus water-scenes; and over a range of latitudes.

In order to accurately compare measurements between instruments, equivalent air masses must be compared. This involves

co-locating measurements in time and space, and accounting for the relative sensitivity of each instrument.15

3.1 Co-location criteria

Temporal co-location is defined as comparing daytime measurements from MOPITT with FTS measurements retrieved within

the same day as the MOPITT overpass. All FTS measurements within the same day as the MOPITT overpass time of ∼10:30

a.m. (local time) are considered. While the MOPITT overpass also occurs at∼10:30 p.m., the daytime-only MOPITT measure-

ments are used in order to include enhanced information from the reflected solar NIR. Another constraint is that ground-based20

instruments only measure during daytime clear-sky conditions.

MOPITT retrievals are spatially co-located with the FTS by selecting MOPITT data within a one degree radius around each

ground station, a distance criterion that is suggested by Sparling and Bacmeister (2001). One degree has been found adequate

in other satellite validation studies (Yurganov et al., 2008; Kerzenmacher et al., 2012), and falls within the range of previous

validation of the V6 MOPITT product, which used radii of 0.5◦ (against National Oceanic and Atmospheric Administration,25

NOAA, profiles) and 2◦ (against HIAPER Pole-to-Pole Observations, HIPPO) (Deeter et al., 2014).

3.2 Averaging

Prior to validation, MOPITT retrievals that are co-located with FTS measurements are averaged, inversely weighted by the

square of relative retrieval measurement error. Thus, one MOPITT average is compared with several FTS measurements.

There are several advantages of averaging the MOPITT data. Combining satellite measurements within the one degree ra-30

dius criterion satisfies a compromise between reducing the effects of random retrieval noise, and minimizing spatial dilution

of measurements through using a small radius. Error-weighted averaging improves the signal-to-noise ratio, and reduces the
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random uncertainty in the MOPITT data, while any systematic bias remains, allowing diagnosis of the MOPITT bias. Aver-

aging will also reduce the co-location errors associated with non-coincidence of air masses, thereby reducing the sampling

bias. Additionally, averaging improves computational efficiency, reducing the number of comparisons at some stations from

∼40,000 to ∼5,000. Error-weighted averaging is also performed for the corresponding MOPITT AK matrices and a priori.

The instrument error is combined in quadrature. Depending upon the experiment, averages are restricted to include land-only5

scenes, water-only scenes, or specific detector elements pixels.

A comparison between the validation of averaged and raw MOPITT values against HIPPO and ACE-FTS measurements

is available in the supplementary material of Martínez-Alonso et al. (2014). These authors concluded that the two methods

produced equivalent results, and found that averaged MOPITT values produced bias of <1.2% against HIPPO and <0.8%

against ACE-FTS, over raw MOPITT values. Therefore, averaging MOPITT values here could overestimate MOPITT biases10

by approximately 1%.

Temporal averaging is not performed on the FTS measurements, which enables a qualitative assessment of the influence of

diurnal changes CO. In summary, the MOPITT spatial averages are compared separately with each FTS measurement in the

same day.

3.3 Vertical re-gridding15

Vertical grids between instruments are different in terms of resolution as well as the retrieved surface altitude. Specifically, FTS

measurements are retrieved on a finer vertical grid than MOPITT. The FTS measurements must be re-gridded to the MOPITT

vertical levels for two reasons: (1) measurements must describe the total column over the same altitude range in order to

compare equivalent atmospheric amounts; (2) the FTS profile will be smoothed by the MOPITT AKs, which are reported on

MOPITT vertical layers.20

MOPITT CO profile values describe the average VMR within the layer above the reported level (Deeter et al., 2013). In

contrast, FTS values are reported on layer mid-points and describe the average VMR within that layer (using SFIT), or are

level values (when using PROFFIT). FTS profiles are re-gridded in a manner that is independent of the FTS profile definition,

assuming hydrostatic equilibrium. We first interpolate the FTS profile in logP space to an ultrafine grid of 100 levels per

MOPITT layer. The VMR values are then averaged over each set of 100 ultrafine levels to produce an average within each25

MOPITT layer. Resulting FTS averages are associated with levels, the same definition as for the MOPITT profile.

During re-gridding, two situations are accounted for: either the reported FTS surface pressure is larger than MOPITT’s; or

the FTS surface pressure is smaller than MOPITT’s. In the first case, if the FTS surface pressure is larger than MOPITT, any

FTS layers below the MOPITT surface layer are not used when averaging the 100 ultrafine levels. This process is visualized in

Fig. 2 (a). If the MOPITT surface layer occurs at an altitude above 900 hPa, the MOPITT profile will have less than 10 vertical30

layers, as will the re-gridded FTS profile.

Alternatively, where FTS surface pressure is smaller than the MOPITT surface pressure, the FTS values are not extrapolated

outside the FTS surface pressure. These situations occur mainly for stations located near highly varying terrain or at high

altitude. One possible method is to replace the missing lower values of the interpolated FTS profile with a scaled version of

6
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the MOPITT a priori, such as in Kerzenmacher et al. (2012). However, seeing as land exists below the altitude of the FTS

station, we choose an alternative method that uses the lowest level of the re-gridded FTS profile to define the lower bound of

the comparison altitude range. In these cases, a new MOPITT column is calculated from a truncated profile to compare with

the re-gridded FTS values. Figure 2 (b) shows the schematic of this process.

3.4 Averaging kernel smoothing5

MOPITT AKs are used to smooth the re-gridded FTS profiles in order to account for sensitivity differences between instru-

ments. The total column AKs of FTS are near unity over the altitude range covered by MOPITT (e.g. Toronto and Wollongong

in Fig. 3; column 4), indicating relatively uniform sensitivity to the true atmospheric state and little inclusion of the a priori

in the retrieved values. In contrast, the column AKs of MOPITT peak in the free troposphere and show overall less sensitivity

than FTS, including more of the a priori in the retrievals, particularly for the lower altitude levels. Rodgers and Connor (2003)10

show that when intercomparing instruments, if one instrument possesses less dependence on the a priori and more information

than the other, it can be used as a closer representation of the true atmospheric state. Therefore, we take the FTS retrievals to

be ‘atmospheric truth’ and smooth to MOPITT retrieval space. Specifically, the vertically re-gridded FTS profile is smoothed

by MOPITT AK matrices.

The MOPITT AK matrices are applied following Rodgers and Connor (2003), modified for log(VMR):15

log10(xsmooth,i) = log10(xap,i) +
n∑

j=1

Aij (log10(xFTS,j)− log10(xap,j)) (1)

where n is the number of vertical layers, xsmooth = {xsmooth,i | i= 1...n} is the required smoothed VMR profile; xap =

{xap,i | i= 1...n} is the MOPITT a priori VMR profile; A = {Ai,j | i= 1...n, j = 1...n} is the MOPITT AK matrix; and

xFTS = {xFTS,i | i= 1...n} is the FTS regridded VMR profile. The A has been calculated based on log10(VMR), and there-

fore must be applied to a profile of log10(VMR). Differences between AKs matrices for the three MOPITT products are20

visualized in Fig. 4. AKs are further discussed in Sect. 4.1, 4.2 and 4.3.

The resulting smoothed profile of log10(VMR) is converted to a VMR profile. Equations 2 and 3 describe the relationship

between the smoothed VMR values and the terms in Eq. 1.

xsmooth,i = xap,i · 10

n∑
j=1

Aij(log10(xF T S,j)−log10(xap,j))

(2)

= xap,i ·
n∏

j=1

(
xFTS,j

xap,j

)Aij

(3)25

Smoothed FTS total column values (csmooth) are calculated from xsmooth using pressure weighted integration with MOPITT

retrieval pressure widths (Eq. 4). The smoothed FTS column value is calculated over the same altitude range as MOPITT and

represents what MOPITT would have retrieved, had the FTS measurement described the true atmosphere.

7
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csmooth = α

n∑

i=1

(xsmooth,i)∆pi (4)

where α is the conversion factor between VMR and column amount and ∆pi is the pressure width of layer i.

MOPITT retrieved column (cM ) is then validated against the smoothed FTS column, for example by calculating the mean

bias (Eq. 5).

station mean bias =
m∑

k=1

(cM,k − csmooth,k)
m

(5)5

where m is the number of comparisons at an NDACC station.

4 Validation results

4.1 Information content

The information content of each instrument is described by Degrees of Freedom for Signal (DFS). DFS are determined from

the trace of the AK matrix, which is influenced by instrumental and geophysical parameters (Rodgers, 2000; Deeter et al.,10

2015). DFS are provided for each MOPITT retrieval and are calculated for FTS measurements from the AK matrices.

The theoretical maximum DFS of each instrument may be higher than reported values because AKs depend on both the

retrieval methods and the choice of a priori, which are different between instruments. However, we aim to validate the op-

erational MOPITT products rather than perform instrument intercomparison, which means a comparison of retrieved DFS

between instruments is indicative of the information content differences between retrieved values.15

Median DFS for each instrument at each station is recorded in Table 2. MOPITT median DFS are below 2 at all stations.

The joint TIR-NIR product consistently retrieves more information than the TIR-only product and the NIR-only product shows

very low DFS, although some information is still present. In comparison, the FTS measurements retrieve more information

than MOPITT at all stations. Median DFS for FTS is generally above 2 (except at La Réunion, Zugspitze and Ny-Ålesund).

Higher information content in the ground-based measurements relative to MOPITT supports our choice to smooth the FTS20

measurements by the MOPITT AK.

4.2 Total column validation at each station

MOPITT is evaluated against smoothed FTS values using correlation and bias analysis. Validation results at each station are

summarized in Tables 3a, 3b and 3c. Results are for daytime land scenes, except for three stations where MOPITT land scenes

were sparse, and consequently use water scenes (IZA, MLO & LRN). Example correlation plots for each MOPITT product are25

shown for Toronto and Wollongong in Fig. 5. Comparison plots for all stations are found in the supplementary material.

MOPITT is generally biased high relative to the FTS by a few percent. Overall, the TIR-only product performs the best,

followed by the joint-TIR-NIR and then NIR-only. Mean station biases are always less than 10% for TIR-only with an average

8
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bias across all stations (bias) of 2.8%. Biases are generally less than 10% for TIR-NIR (apart from at Ny-Ålesund and Bremen)

producing bias of 5.4%. NIR-only biases are less than 10% (except at Ny-Ålesund) with a bias of 7.0%. Standard deviation

is always larger than bias, except for the TIR-NIR product at Lauder and the NIR-only product at Lauder and Arrival Heights.

Correlation values are generally the highest for the TIR-only product (r̄: 0.85) compared to TIR-NIR (r̄: 0.80) or NIR-only

(r̄: 0.77). Average correlation values found here are lower by about 0.09 compared with previous validation of the MOPITT5

version 6 products against NOAA column values, while bias is equivalent (Deeter et al., 2014).

Instrument sensitivity varies with season, which is reflected in the column AK seasonal variability. An example of the range

of AK variability is shown by the normalized MOPITT column AKs at Toronto and Wollongong (Fig. 3). The question arises

whether seasonal sensitivity differences are significant enough to affect validation results. We conducted seasonal validation at

each station and found the maximum difference in station-wise bias between seasons was on average 4.8%, 4.5% and 3.2% for10

TIR-only, TIR-NIR and NIR-only respectively. Seasonal variation in bias is below the all-station average standard deviation

for each product: 7.6% (TIR-only), 10.3% (TIR-NIR) and 9.4% (NIR-only). We conclude there is no significant seasonally

dependent bias for MOPITT.

4.3 Surface-type specific validation

MOPITT classifies pixel surface-type as land, water, or mixed. Different surface-types have the potential to affect validation15

results by influencing MOPITT retrievals. Larger variability in surface height over land, combined with emissivity and albedo

differences, results in greater geophysical noise relative to water scenes (Deeter et al., 2011). Also, thermal contrast between

skin surface and the overlying air can affect MOPITT sensitivity to measuring CO. For instance, water scenes have lower

thermal contrast, where skin surface and overlying air temperatures are similar. MOPITT has difficulty viewing the surface in

low thermal contrast scenes and in these cases has better sensitivity to CO in the free troposphere. Consequently, water scenes20

tend to be sensitive to the free troposphere, while land scenes include more information from the lower troposphere (Worden

et al., 2010).

AKs reflect the retrieval differences between surface-types (Fig. 4). For example, when comparing the mean MOPITT AK

matrices at Toronto, the TIR-only land AK shows increased sensitivity around 900 hPa relative to the water AK, as a result

of improved thermal contrast. The TIR-NIR land AK shows even greater sensitivity at around 900 hPa relative to both the25

TIR-only land AK and the TIR-NIR water AK, due to the combination of improved thermal contrast with extra information

from the NIR signal. While the TIR-NIR water product does not include reflected solar information, AKs are different between

the TIR-only and TIR-NIR over water scenes, due to retrieval differences. Specifically, the joint product attributes less weight

to the a priori in the retrieval process, with a cost of higher variability (Deeter et al., 2011).

To assess the effect of different surface-types in the MOPITT retrievals, validation is performed separately for land or water30

scenes. At some stations, MOPITT provides a significant number of pixels within the 1 degree radius for only one surface-

type: La Réunion, Mauna Loa and Izaña are only represented by water pixels, while Bremen, Jungfraujoch, Zugspitze, Kiruna,

and Lauder are only represented by land pixels. Consequently, comparison between land or water pixels is completed where
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stations are represented approximately equally by water and land surface-types. At each station, the error-weighted average

within a one degree radius is calculated with either all land or all water pixels. Mixed surface-type pixels are discarded.

Table 4 summarizes validation results over water scenes for TIR-only and joint TIR-NIR products. Land scene validation

results were presented in Tables 3a, 3b and 3c. While the TIR-NIR product over water scenes does not include NIR information,

differences arise compared to the TIR-only water scenes due to differences in the retrieval algorithm as discussed above.5

Validation statistics over water show a pattern consistent with validation over land, i.e. lower correlation, higher bias and

higher standard deviation occurs for the joint product compared to TIR-only. Overall, the choice of surface-type has very little

effect on validation statistics for the sites investigated here.

4.4 Pixel-wise validation

The MOPITT detectors are comprised of four detector elements, resulting in four pixels each with a nadir ground size of10

22 × 22 km. Instrument-only noise is determined for each pixel from a periodic view of space. Pixel noise, combined with

the response to geophysical variability, has been demonstrated to be highly variable between pixels (Deeter et al., 2015). We

investigate the impact of pixel-specific variability on validation. At each station, the error-weighted average for each pixel is

calculated within a one degree radius to be validated against FTS measurements. Analysis is for daytime-only and land-only

retrievals (except for water-only at IZA, MLO and LRN).15

Validation results differ between pixels. Most noticeably, pixel 1 provides consistently poorer correlations and larger standard

deviations than the other three pixels (e.g. summarized for Lauder in Table 5). To visualize results at all stations, correlation

is plotted against bias in Fig. 6. Perfect validation occurs at the intersection of the zero bias and unity correlation lines. All

stations generally produce similar results to Lauder, with pixel 1 showing the poorest correlation in all three products. Figure

6 indicates that for TIR-NIR and NIR-only, pixel 1 also consistently shows the highest bias. Pixel 3 generally shows highest20

correlation for all three products. Pixel-wise validation is also consistent with Sect. 4.2, where TIR-only generally produces

the higher correlations, lower bias, and smaller standard deviation compared to TIR-NIR and NIR-only.

The effect of the deficient pixel 1 on overall retrievals is assessed by comparing the all-pixel error-weighted average with

an error-weighted average including only pixels 2 to 4. For retrieval types TIR-only and TIR-NIR the validation results for

the all-pixel averages are almost equivalent to the pixel 2–4 average results (Fig. 6). Therefore, MOPITT error diagnostics25

for TIR-only and TIR-NIR adequately account for the poor performance of pixel 1. In comparison for NIR-only, the all-pixel

averages are systematically more biased than the pixel 2–4 averages. This suggests error characterization for the NIR-only

product may need improving.

Currently, the MOPITT level 3 product is a combination of pixels 1 and 2 (Deeter, 2013). Results here suggest the level

3 product may provide below optimal representation of atmospheric CO due to pixel choice, particularly for the NIR-only30

retrievals. The current procedure of only maximizing DFS may not be the most optimal requirement for choosing pixels to be

combined in the level 3 product.

Results found here may also be instructive for data assimilation, where weighted averages (or "superobservations" as de-

scribed in Barré et al. (2015)) are used to reduce satellite data to the model horizontal resolution. The poor performance of
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pixel 1 suggests to first remove pixel 1 from the average. A more restrictive average would include the two best pixels for each

dataset: pixels 3 and 4 for TIR-only and pixels 2 and 3 for TIR-NIR and NIR-only. The resulting average would include the

satellite values that perform best against the FTS measurements.

5 Discussion and implications

5.1 Geographic dependence of validation5

Satellite retrievals over colder surfaces at higher latitudes are challenging mainly due to low thermal contrast, resulting in a

higher weighting to the a priori and consequent lower information content. Information content of satellite retrievals is therefore

dependent upon latitude. The latitudinal dependence of MOPITT DFS at these stations of interest is depicted in Fig. 7 (top

row), which shows how DFS decreases moving closer to the poles, in the TIR-only and TIR-NIR products. The relationship of

DFS with bias and correlation is assessed through latitudinal dependence (Fig. 7).10

The latitudinal dependence of MOPITT total column retrieval biases are consistent with Deeter et al. (2014), who show V6

TIR-only biases relative to HIPPO are generally within ±2×1017 molec. cm−2 (or approximately ± 10%). Results here show

the latitudinal dependence is similarly bound for the TIR-NIR and NIR-only products (Fig. 7, middle row). The latitudinal

resolution of NDACC stations is not as fine as for HIPPO measurements, particularly at the equator. Therefore, results here

cannot confirm the negative bias in MOPITT found at the equator against HIPPO (Deeter et al., 2014). However, validation15

against FTS is complimentary to HIPPO comparisons because FTS can validate MOPITT land and water scenes, compared

to HIPPO measurements being taken only over water. The FTS also provide longer timeseries, while HIPPO are a set of 5

∼two-month campaigns taken between 2009–2011.

Supplementary material in Jiang et al. (2015) suggested MOPITT bias may be related to DFS. We find that although DFS

vary strongly with latitude, the MOPITT bias does not depend upon latitude. There is also no latitudinal dependence in the20

DFS, bias or Pearson’s R for the NIR-only product, reflecting that this product is not as affected by thermal contrast difficulties.

In contrast, correlations are weakly determined by latitude, which suggests that DFS are related to correlation values (Fig. 7,

bottom row). Two situations occur, with high correlations at high DFS values (TIR-NIR and the Northern Hemisphere in TIR-

only), and high correlations at low DFS (Southern Hemisphere TIR-only). There are two mechanisms in the validation process

that may be responsible for a relationship between DFS and Pearson’s R. First, when smoothing the FTS comparison value by25

the MOPITT AK and a priori, at locations where DFS are lower, more a priori is included. In this case, strong correlations are

expected for comparisons at low DFS. This effect is evident in the TIR-only Pearson’s R versus latitude results for the Southern

Hemisphere. A second influence is that improved correlation can be expected at higher DFS since more of the true atmospheric

state is observed. This effect is shown in the Pearson’s R versus latitude plot for TIR-NIR and the Northern Hemisphere of

TIR-only.30

To help understand the driver of bias variability, we investigate the influence of altitude and find a larger range in bias at

lower altitudes, for the TIR-only and TIR-NIR products (Fig. 8). High biases in TIR-only and TIR-NIR product (defined as

>5%) all occur at low altitudes. High bias is most likely due to values from the single overpass time of MOPITT at 10:30 a.m.
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being compared with all daytime measurements from FTS at these stations. There is more variability throughout the day in

the FTS column due to changes in lower tropospheric CO, which is not captured in the MOPITT measurements. For example,

the FTS will capture diurnal variation due to greater atmospheric mixing throughout the day, frontal systems bringing variable

CO amounts, and/or rapid changes in nearby emissions and transport. Biases may be improved by temporally restricting

comparisons closer to the 10:30 a.m. overpass. Further investigation would be necessary to determine the effect of temporal5

restriction at stations with high bias. The NIR-only product does not show bias dependence on altitude. Comparisons with

NIR-only include a large amount of a priori (mean DFS of 0.32), which masks the variability in FTS columns.

Satellite bias can introduce inaccuracies for data assimilation and inverse modeling studies, particularly at high latitudes

(Hooghiemstra et al., 2012; Jiang et al., 2015; Gaubert et al., 2016). Significantly high emissions were attributed to high

MOPITT bias in Hooghiemstra et al. (2012), who suggest the need for satellite bias correction. Therefore, rather than restricting10

data to be assimilated to within ±40◦ (Jiang et al., 2015), we suggest that FTS could be used to either correct or account for

MOPITT retrieval biases, particularly at high latitude stations, prior to data assimilation.

5.2 Temporal stability of MOPITT

Drift in MOPITT validation has been previously studied in relation to NOAA profiles (Deeter et al., 2014). However, there is

limited evaluation of geographic variability in the drift as Deeter et al. (2014) combined NOAA profiles at all locations for15

temporal analysis. The FTS datasets are ideal for assessing the global long-term stability in MOPITT retrievals, due to long

records and spanning a range of latitudes.

Drift in validation is quantified by the slope of least-squares linear regression on the MOPITT–FTS biases against time. Bias

drift is initially approximated as linear in time due to the unknown cause. Significant drift occurs when the p-value from a

two-tailed t-test is less than 0.01. An example of the time dependence of MOPITT–FTS biases at all stations is shown for the20

TIR-NIR product in Fig. 9. Drift plots for other products are provided in supplementary material. Bias drift values are recorded

in Tables 3a–3c.

Drift ranges between -0.91 and 0.33% yr−1 (TIR-only), -1.2 and 0.87% yr−1 (TIR-NIR) and -1.1 and 0.59% yr−1 (NIR-

only). TIR mean drift (0.003% yr−1) is lower than Deeter et al. (2014) who determined a drift of 0.003×1017 molec. cm−2

yr−1 (approximately 0.15% yr−1). The TIR-NIR mean drift (-0.14% yr−1) is about equal magnitude, but opposite sign to25

Deeter et al. (2014) (approximately 0.15% yr−1). NIR-only mean drift (-0.17% yr−1) is equivalent to Deeter et al. (2014)

(approximately -0.15% yr−1).

The geographical relationship of the bias drift is shown in Fig. 10. Drift in the Southern Hemisphere is small. In contrast,

Northern Hemisphere drift is highly variable. Instrument degradation would be expected to produce consistent drift across

stations. However, the variable drift implies the cause of drift is due to input parameters to the MOPITT retrieval process rather30

than instrument degradation.

Accounting for significant bias drift is challenging. At some stations MOPITT drift is large enough to obscure trend analysis,

which has been shown to be on the order of -1% yr−1 globally (Worden et al., 2013). A large drift at some stations is probably

due to the influence of low time sampling and outliers in the FTS record (Mauna Loa, Bremen). Other stations with high bias
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occur at high latitudes in the Northern Hemisphere, where potential uncharacterized surface errors contribute to retrieval drift.

Ho et al. (2005) found large standard deviation in a priori emissivity due to cloud detection uncertainties. Additionally, sea-ice

may not be correctly accounted for in the satellite retrievals because sea-ice scenes are retrieved with the same parameters

as water, despite having different emissivity properties. Consequently, a trend in cloudiness or sea-ice extent could therefore

produce a trend in MOPITT retrievals. As a result, we recommend avoiding the use of MOPITT retrievals above 60◦ N when5

assessing the temporal evolution of CO.

6 Conclusions

The first systematic validation of MOPITT version 6 retrievals with ground-based FTS at 14 NDACC stations has demon-

strated low bias of the MOPITT instrument (generally <10%) and has highlighted some important considerations for using

the satellite data in scientific analysis. While values have been calculated for an average of MOPITT values within a 1◦ radius,10

any systematic bias in MOPITT remains and is evaluated. MOPITT is generally biased high relative to FTS and bias was

consistently higher for joint and NIR-only products than for the TIR-only product. Mean bias is 2.8% for TIR-only, 5.4% for

TIR-NIR and 7.0% for NIR-only. MOPITT retrieves with equivalent skill over land or water, although the most information

is present in the joint TIR-NIR land product as indicated by largest DFS. Pixel-wise validation revealed the poor performance

of pixel 1. Some applications that require data thinning techniques (for example data assimilation) may remove pixel 1 from15

weighted averages, as this pixel has the lowest correlation and most variability. The poor performance of pixel 1 also suggests

that processing of the level 3 product may need to be revised. We find no dependence of bias on latitude, suggesting no rela-

tionship to DFS. In contrast, latitude-dependent information content had a weak relationship to correlation results. Variability

in lower tropospheric CO influences MOPITT bias, which is probably due to sampling/sensitivity differences between instru-

ments. MOPITT bias found here may be used to account for satellite error prior to data assimilation, allowing for inclusion20

of data over a wider spatial range than is currently used. The MOPITT long-term bias drift has been bound to within ±0.5%

yr−1 or lower at almost all locations. Variable drift in the Northern Hemisphere implies an uncharacterized retrieval parameter

such as uncertainty in cloud detection or sea-ice representation. We recommend trend analysis should not be performed above

60◦N. Overall, this study extends the geographical and temporal analysis of MOPITT validation results.
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Tables

Table 1. Information about the 14 NDACC ground-based remote-sensing FTS sites. Locations are ordered by latitude.

FTS Station Name Alt. Lat. Lon. Observation Instrument Code Site reference

(3-letter acronym) (masl) Period † ‡

Northern Hemisphere

Eureka, Canada (EUR) 610 80.05◦ N 82.42◦ W 2006–2013 Br125 SFIT4 Batchelor et al. (2009)

Ny-Ålesund, Norway (NYA) 15 78.92◦ N 11.93◦ E 1992–2013 Br120 SFIT4 Notholt et al. (1993)

Thule, Greenland (THU) 225 76.53◦ N 68.74◦ W 1999–2013 Br120M SFIT4 Hannigan et al. (2009)

Kiruna, Sweden (KIR) 419 67.84◦ N 20.41◦ E 1996–2007 Br120 PRO Blumenstock et al. (2006)

2007–2012 Br125

Bremen, Germany (BRE) 27 53.10◦ N 8.85◦ E 2003–2014 Br125 SFIT4 Velazco et al. (2007)

Zugspitze, Germany (ZUG) 2964 47.42◦ N 10.98◦ E 1995–2014 Br125 SFIT2 Sussmann and Schäfer (1997)

Jungfraujoch, Switzerland (JFJ) 3580 46.55◦ N 7.98◦ E 1989–2012 Br120 SFIT2 Mahieu et al. (1997)

Toronto, Canada (TAO) 174 43.66◦ N 79.40◦ W 2002–2013 BoDA8 SFIT4 Wiacek et al. (2007)

Izaña, Spain (IZA) 2367 28.30◦ N 16.48◦ W 1999–2005 Br120M PRO Schneider et al. (2005)

2005–2012 Br125

Mauna Loa, USA (MLO) 3397 19.54◦ N 155.58◦ W 1995–2007 Br120M SFIT4 David et al. (1993)

2007–2012 Br125

Southern Hemisphere

La Réuniona (LRN) 10 20.90◦ S 55.50◦ E 2004–2011 Br120M SFIT4 Senten et al. (2008)

2011–2013 Br125

Wollongong, Australia (WOL) 30 34.41◦ S 150.88◦ E 1996–2008 BoDA8 SFIT4 Paton-Walsh et al. (2005)

2008–2014 Br125

Lauder, New Zealand (LAU) 370 45.04◦ S 169.68◦ E 2001–2014 Br120 SFIT4 Morgenstern et al. (2012)

Arrival Heights (AHS) 250 77.82◦ S 166.65◦ E 1997–2014 Br120M SFIT4 Zeng et al. (2012)

† BoDA8 = Bomem DA8, Br120 = Bruker 120HR, Br120M = Bruker 120M, Br125 = Bruker 125 HR
‡ Code versions are as follows: SFIT4 is version V0.9.4.4, except for at Ny-Ålesund and Bremen, where it is version V0.9.4.3_BF_MP; SFIT2 at Jungfraujoch is v3.91, and at Zugspitze

V3.90i; PRO = PROFFIT96.
a Data investigated is only from the St Denis station, and not from Maido.
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Table 2. Information content described by median DFS for different MOPITT products and FTS measurements at each station. DFS is

calculated over approximately the same altitude range for each instrument, surface to ∼26 hPa.

MOPITT MOPITT MOPITT FTS

TIR-only TIR-NIR NIR-only

Site land water land water

EUR 0.63 0.66 1.20 0.95 0.49 2.53

NYA 0.69 0.91 1.11 1.23 0.18 1.73

THU 0.48 0.76 1.05 1.06 0.41 2.70

KIR 0.90 ∼ 1.35 ∼ 0.42 2.60

BRE 1.16 ∼ 1.69 ∼ 0.53 1.99

ZUG 1.03 ∼ 1.50 ∼ 0.33 1.77

JFJ 1.05 ∼ 1.52 ∼ 0.31 2.15

TAO 1.12 0.94 1.60 1.32 0.34 2.92

IZA ∼ 1.19 ∼ 1.58 ∼ 2.62

MLO ∼ 1.27 ∼ 1.66 ∼ 2.46

LRN ∼ 1.26 ∼ 1.64 ∼ 1.90

WOL 1.04 1.15 1.46 1.55 0.10 2.55

LAU 0.91 ∼ 1.30 ∼ 0.20 2.80

AHS 0.30 0.48 0.77 0.81 0.16 3.44

mean 0.85 0.96 1.32 1.31 0.32 2.44

∼ indicates where not enough pixels of that surface-type were available for

analysis.
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Table 3a. Site-wise validation results for land pixels at Northern Hemisphere, high-latitude, stations. Mean bias (MOPITT-FTS) is expressed

in units of 1017 molec. cm−2, as well as percent relative to MOPITT values; units of drift are 1017 molec. cm−2 yr−1 or % yr−1, shown

with standard error. Bold text indicates significant drift where p < 0.01, determined from a two-tailed t-test.

Version EUR NYA THU KIR

TIR-only bias 0.10 0.80 -0.38 0.20

% bias 0.59 4.23 -2.19 1.00

% SD 10.54 7.09 7.85 6.39

r 0.61 0.85 0.78 0.84

drift 0.054±0.022 -0.013±0.015 0.045±0.010 -0.016±0.015

drift (% yr−1) 0.33±0.14 -0.07±0.08 0.25±0.06 -0.08±0.07

# obs 1139 580 1720 695

TIR-NIR bias 0.57 2.52 0.68 0.93

% bias 3.36 12.15 3.58 4.50

% SD 14.73 15.85 13.19 7.65

r 0.67 0.66 0.66 0.83

drift -0.013±0.059 -0.125±0.050 0.166±0.024 -0.060±0.021

drift (% yr−1) -0.08±0.34 -0.60±0.24 0.87±0.12 -0.29±0.10

# obs 944 482 1461 646

NIR-only bias 0.92 2.26 1.21 1.52

% bias 5.27 10.91 6.17 7.41

% SD 8.08 15.34 10.03 8.32

r 0.91 0.65 0.78 0.83

drift 0.102±0.032 -0.223±0.047 0.083±0.019 -0.063±0.022

drift (% yr−1) 0.59±0.19 -1.08±0.23 0.43±0.10 -0.31±0.11

# obs 948 473 1463 646
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Table 3b. Same as Table 3a but for Northern Hemisphere, low- and mid-latitude sites. Results are for land pixels, except where the majority

of pixels are water (w).

Version BRE ZUG JFJ TAO IZA (w) MLO (w)

TIR-only bias 1.72 -0.11 0.15 1.72 -0.13 0.04

% bias 7.88 -0.77 1.32 7.37 -0.96 0.37

% SD 8.52 6.67 9.54 8.64 6.98 5.92

r 0.86 0.89 0.75 0.78 0.87 0.95

drift -0.200±0.032 0.003±0.004 0.028±0.007 -0.026±0.021 -0.006±0.007 0.060±0.011

drift (% yr−1) -0.91±0.15 0.02±0.03 0.24±0.06 -0.11±0.09 -0.04±0.06 0.54±0.10

# obs 324 5646 1600 717 942 177

TIR-NIR bias 2.34 0.004 0.22 2.07 -0.08 -0.14

% bias 10.26 0.03 1.88 8.78 -0.59 -1.35

% SD 10.25 8.31 12.34 9.90 5.89 6.68

r 0.80 0.87 0.66 0.77 0.91 0.93

drift -0.283±0.069 -0.009±0.006 0.064±0.015 -0.009±0.037 0.007±0.011 0.102±0.017

drift (% yr−1) -1.24±0.30 -0.06±0.04 0.55±0.11 -0.04±0.16 0.05±0.08 0.95±0.16

# obs 255 4558 1257 512 599 109

NIR-only bias 1.33 0.78 0.68 1.19 ∼ ∼
% bias 6.23 5.17 5.57 5.04 ∼ ∼
% SD 8.95 13.31 10.36 6.09 ∼ ∼

r 0.84 0.59 0.62 0.77 ∼ ∼
drift -0.062±0.058 -0.034±0.010 -0.088±0.011 0.006±0.023 ∼ ∼

drift (% yr−1) -0.29±0.27 -0.23±0.07 -0.72±0.09 0.02±0.10 ∼ ∼
# obs 255 4559 1259 512 ∼ ∼

(w) denotes sites where water pixels were more representative and therefore there are no results for NIR retrievals, indicated by∼.
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Table 3c. Same as Table 3b but for Southern Hemisphere sites.

Version LRN (w) WOL LAU AHS

TIR-only bias 0.58 0.86 0.84 0.14

% bias 4.29 6.41 7.71 1.57

% SD 6.45 9.40 6.74 5.21

r 0.94 0.88 0.93 0.95

drift -0.009±0.015 0.022±0.005 0.017±0.005 0.007±0.005

drift (% yr−1) -0.06±0.11 0.16±0.04 0.15±0.05 0.07±0.06

# obs 503 5729 925 473

TIR-NIR bias 0.63 1.21 1.27 0.77

% bias 4.57 8.72 11.09 8.40

% SD 7.10 11.68 8.09 13.15

r 0.94 0.83 0.93 0.73

drift -0.045±0.023 -0.023±0.009 -0.009±0.014 -0.036±0.023

drift (% yr−1) -0.33±0.16 -0.16±0.06 -0.08±0.12 -0.40±0.25

# obs 376 3991 570 297

NIR-only bias ∼ 0.49 1.21 1.06

% bias ∼ 3.60 10.23 10.84

% SD ∼ 4.13 7.44 10.82

r ∼ 0.95 0.85 0.70

drift ∼ -0.006±0.003 -0.005±0.013 -0.019±0.020

drift (% yr−1) ∼ -0.05±0.02 -0.04±0.11 -0.20±0.20

# obs ∼ 4002 570 296

(w) denotes sites where water pixels were more representative and therefore there are no results for NIR retrievals, indicated by∼.
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Table 4. Validation results for MOPITT water pixels for V6 thermal and joint products at stations which had approximately equal represen-

tation by water and land pixels. Values for land validation is in Tables 3a, 3b and 3c. Mean bias is expressed as percent relative to MOPITT

values. Bold text indicates significant drift where p < 0.01, determined from a two-tailed t-test.

Version EUR NYA THU TAO WOL AHS

TIR-only % bias -0.18 4.85 -3.24 8.64 6.29 4.21

water % SD 9.06 6.81 8.38 13.14 9.46 5.78

r 0.70 0.92 0.75 0.79 0.86 0.92

drift (% yr−1) -0.94±0.14 0.01±0.07 0.50±0.07 -0.23±0.15 -0.12±0.04 0.03±0.07

# obs 856 620 1703 608 4832 347

TIR-NIR % bias 1.83 5.41 -4.04 9.24 7.28 5.33

water % SD 13.34 8.00 10.80 14.12 11.68 9.58

r 0.49 0.89 0.68 0.74 0.85 0.84

drift (% yr−1) -1.20±0.35 -0.24±0.12 0.86±0.10 -0.01±0.24 0.05±0.06 -0.11±0.21

# obs 740 491 1471 445 3356 229
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Table 5. Validation results for each pixel over land scenes at Lauder. Bias and standard deviation (SD) units are 1017 molec. cm−2.

Version pixel 1 pixel 2 pixel 3 pixel 4 pixels 2-4 all

TIR-only bias 0.70 0.81 1.00 0.64 0.87 0.85

SD 1.22 0.99 0.76 0.84 0.76 0.74

r 0.80 0.88 0.91 0.90 0.93 0.93

TIR-NIR bias 1.15 1.47 1.48 0.95 1.31 1.27

SD 1.54 1.08 1.00 1.06 0.99 0.93

r 0.81 0.90 0.90 0.89 0.91 0.93

NIR-only bias 1.84 1.30 0.90 0.83 1.01 1.21

SD 1.93 1.04 0.86 1.09 0.70 0.88

r 0.64 0.83 0.85 0.71 0.89 0.86
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Figures

Figure 1. Location of the 14 NDACC ground-based remote-sensing FTS sites used in this study. Three-letter acronyms correspond to the

information in Table 1.
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Figure 2. Interpolating FTS altitude levels to match MOPITT levels in the case of (a) FTS surface pressure being greater than MOPITT

surface pressure; and (b) FTS surface pressure being less than MOPITT surface pressure.
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Figure 3. Seasonal mean MOPITT and FTS column AKs at Northern Hemisphere station Toronto (top row) and Southern Hemisphere station

Wollongong (bottom row). Columns correspond to data products: column 1 = TIR-only; column 2 = TIR-NIR; column 3 = NIR-only; and

column 4 = FTS. The MOPITT AKs have been normalised by the dataset mean. Note the x-axis scale for the FTS AKs is zoomed.
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Figure 4. Mean MOPITT AKs at Toronto.
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Figure 5. Example of the correlation plots at Toronto (top row) and Wollongong (bottom row). Daytime, land-only pixels are shown for each

retrieval type TIR-only, TIR-NIR and NIR-only. Black dotted line indicates mean bias and blue dashed line indicates correlation regression

line. For reference, the 1:1 line is indicated in solid black. Error bars are the error for MOPITT values, combined in quadrature from the

pixels within a 1 deg radius of the station. Column amounts are molecules/cm2.
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Figure 6. Pixel-wise validation results (correlation and bias) for each retrieval type at all FTS sites. Open markers represent results at each

station and filled markers represent the mean value of all stations. Solid lines indicate zero bias and unity correlation. Columns are for the

different MOPITT data products - column 1: TIR-only, column 2: TIR-NIR, and column 3: NIR-only.
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Figure 7. Latitudinal relationship with DFS (top row), bias (second row), and Pearson’s R correlation value (bottom row). Error bars in bias

plot denote standard deviations. Columns are for the different MOPITT data products - column 1: TIR-only, column 2: TIR-NIR, and column

3: NIR-only.
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Figure 8. Altitude dependence of MOPITT retrieval bias. Error bars in bias plot denote standard deviations. Columns are for the different

MOPITT data products - column 1: TIR-only, column 2: TIR-NIR, and column 3: NIR-only.
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Figure 9. Temporal evolution of bias (MOPITT–FTS) at all stations for V6 joint TIR-NIR product. Blue dashed line indicates bias drift

calculated from a linear least squares regression. Plots are ordered by latitude, from north to south.
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Figure 10. Geographic variability in bias drift. Columns are for the different MOPITT data products - column 1: TIR-only, column 2:

TIR-NIR, and column 3: NIR-only.
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Appendix A: Supplementary Figures

Figure 11. An example of the smoothing technique applying MOPITT TIR-only AKs to a FTS profile (blue circles) at Wollongong. The

FTS profile is interpolated in logP space to an ultrafine grid of 100 levels per MOPITT layer (light blue), then averaged within each MOPITT

layer (steel blue) and smoothed by the MOPITT AK (purple) to be commensurate with MOPITT values (red circles). Dashed grey lines

indicate MOPITT level edges.
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Figure 12. Mean FTS AKs at Toronto. Colors approximately correspond to MOPITT layers.
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Figure 13. Mean MOPITT seasonal column AKs at all stations for the TIR-NIR product. Stations are ordered by latitude.
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Figure 14. Correlation plot for V6 TIR-only product. Blue dashed line indicates correlation slope, black dashed line indicates mean bias,

solid black line is 1:1 line for comparison. Error bars are the daily combined MOPITT error within 1◦ radius.
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Figure 15. Correlation plot for V6 TIR-NIR product. Blue dashed line indicates correlation slope, black dashed line indicates mean bias,

solid black line is 1:1 line for comparison. Error bars are the daily combined MOPITT error within 1◦ radius.
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Figure 16. Correlation plot for V6 NIR-only product. Blue dashed line indicates correlation slope, black dashed line indicates mean bias,

solid black line is 1:1 line for comparison. Error bars are the daily combined MOPITT error within 1◦ radius.

42

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-241, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 21 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 17. Temporal evolution of bias (MOPITT - FTS) at all stations for V6 TIR-only product. Blue dashed line indicates bias drift.
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Figure 18. Temporal evolution of bias (MOPITT - FTS) at all stations for V6 NIR-only product. Blue dashed line indicates bias drift.
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